Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Molecules ; 28(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2242509

ABSTRACT

A series of new congeners, 1-[2-(1-adamantyl)ethyl]-1H-benzimidazole (AB) and 1-[2-(1-adamantyl)ethyl]-4,5,6,7-tetrahalogeno-1H-benzimidazole (Hal=Cl, Br, I; tClAB, tBrAB, tIAB), have been synthesized and studied. These novel multi-target ligands combine a benzimidazole ring known to show antitumor activity and an adamantyl moiety showing anti-influenza activity. Their crystal structures were determined by X-ray, while intermolecular interactions were studied using topological Bader's Quantum Theory of Atoms in Molecules, Hirshfeld Surfaces, CLP and PIXEL approaches. The newly synthesized compounds crystallize within two different space groups, P-1 (AB and tIAB) and P21/c (tClAB and tBrAB). A number of intramolecular hydrogen bonds, C-H⋯Hal (Hal=Cl, Br, I), were found in all halogen-containing congeners studied, but the intermolecular C-H⋯N hydrogen bond was detected only in AB and tIAB, while C-Hal⋯π only in tClAB and tBrAB. The interplay between C-H⋯N and C-H⋯Hal hydrogen bonds and a shift from the strong (C-H⋯Cl) to the very weak (C-H⋯I) attractive interactions upon Hal exchange, supplemented with Hal⋯Hal overlapping, determines the differences in the symmetry of crystalline packing and is crucial from the biological point of view. The hypothesis about the potential dual inhibitor role of the newly synthesized congeners was verified using molecular docking and the congeners were found to be pharmaceutically attractive as Human Casein Kinase 2, CK2, inhibitors, Membrane Matrix 2 Protein, M2, blockers and Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2, inhibitors. The addition of adamantyl moiety seems to broaden and modify the therapeutic indices of the 4,5,6,7-tetrahalogeno-1H-benzimidazoles.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , X-Rays , Molecular Docking Simulation , Casein Kinase II , Benzimidazoles/pharmacology , Ligands , Membrane Proteins
2.
Bioorg Med Chem Lett ; 72: 128867, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-1906812

ABSTRACT

The discovery of antiviral agents against SARS-CoV-2 is an important step toward ending the COVID-19 pandemic and to tackle future outbreaks. In this context, the main protease (Mpro) represents an ideal target for developing coronavirus antivirals, being conserved among different strains and essential for survival. In this work, using in silico tools, we created and validated a docking protocol able to predict binders to the catalytic site of Mpro. The following structure-based virtual screening of a subset of the ZINC library (over 4.3 million unique structures), led to the identification of a hit compound having a 2-thiobenzimidazole scaffold. The inhibitory activity was confirmed using a FRET-based proteolytic assay against recombinant Mpro. Structure-activity relationships were obtained with the synthesis of a small library of analogs, guided by the analysis of the docking pose. Our efforts led to the identification of a micromolar Mpro inhibitor (IC50 = 14.9 µM) with an original scaffold possessing ideal drug-like properties (predicted using the QikProp function) and representing a promising lead for the development of a novel class of coronavirus antivirals.


Subject(s)
Benzimidazoles/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins
3.
Commun Biol ; 5(1): 154, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1699831

ABSTRACT

SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Exonucleases/antagonists & inhibitors , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Anilides/pharmacology , Animals , Base Sequence , Benzimidazoles/pharmacology , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Drug Synergism , Exonucleases/genetics , Exonucleases/metabolism , Humans , Proline/pharmacology , Pyrrolidines/pharmacology , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Valine/pharmacology , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , Virus Replication/genetics
4.
Biochem Biophys Res Commun ; 571: 26-31, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1312941

ABSTRACT

The pandemic of SARS-CoV-2 has necessitated expedited research efforts towards finding potential antiviral targets and drug development measures. While new drug discovery is time consuming, drug repurposing has been a promising area for elaborate virtual screening and identification of existing FDA approved drugs that could possibly be used for targeting against functions of various proteins of SARS-CoV-2 virus. RNA dependent RNA polymerase (RdRp) is an important enzyme for the virus that mediates replication of the viral RNA. Inhibition of RdRp could inhibit viral RNA replication and thus new virus particle production. Here, we screened non-nucleoside antivirals and found three out of them to be strongest in binding to RdRp out of which two retained binding even using molecular dynamic simulations. We propose these two drugs as potential RdRp inhibitors which need further in-depth testing.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Amides/pharmacology , Antiviral Agents/chemistry , Benzimidazoles/pharmacology , COVID-19/virology , Carbamates/pharmacology , Catalytic Domain , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cyclopropanes/pharmacology , Drug Evaluation, Preclinical , Drug Repositioning , Fluorenes/pharmacology , Humans , Lactams, Macrocyclic/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Proline/analogs & derivatives , Proline/pharmacology , Protein Conformation , Quinoxalines/pharmacology , Sulfonamides/pharmacology
5.
Sci Immunol ; 6(59)2021 05 18.
Article in English | MEDLINE | ID: covidwho-1234281

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic, resulting millions of infections and deaths with few effective interventions available. Here, we demonstrate that SARS-CoV-2 evades interferon (IFN) activation in respiratory epithelial cells, resulting in a delayed response in bystander cells. Since pretreatment with IFNs can block viral infection, we reasoned that pharmacological activation of innate immune pathways could control SARS-CoV-2 infection. To identify potent antiviral innate immune agonists, we screened a panel of 75 microbial ligands that activate diverse signaling pathways and identified cyclic dinucleotides (CDNs), canonical STING agonists, as antiviral. Since CDNs have poor bioavailability, we tested the small molecule STING agonist diABZI, and found that it potently inhibits SARS-CoV-2 infection of diverse strains including variants of concern (B.1.351) by transiently stimulating IFN signaling. Importantly, diABZI restricts viral replication in primary human bronchial epithelial cells and in mice in vivo. Our study provides evidence that activation of STING may represent a promising therapeutic strategy to control SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , COVID-19/prevention & control , Interferons/immunology , Membrane Proteins/agonists , Animals , Cell Line , Chlorocebus aethiops , Enzyme Activation/drug effects , Epithelial Cells/virology , Humans , Immune Evasion/immunology , Immunity, Innate/drug effects , Immunity, Innate/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Vero Cells , Virus Replication/drug effects
6.
Sci Immunol ; 6(59)2021 05 18.
Article in English | MEDLINE | ID: covidwho-1234280

ABSTRACT

Coronaviruses are a family of RNA viruses that cause acute and chronic diseases of the upper and lower respiratory tract in humans and other animals. SARS-CoV-2 is a recently emerged coronavirus that has led to a global pandemic causing a severe respiratory disease known as COVID-19 with significant morbidity and mortality worldwide. The development of antiviral therapeutics are urgently needed while vaccine programs roll out worldwide. Here we describe a diamidobenzimidazole compound, diABZI-4, that activates STING and is highly effective in limiting SARS-CoV-2 replication in cells and animals. diABZI-4 inhibited SARS-CoV-2 replication in lung epithelial cells. Administration of diABZI-4 intranasally before or even after virus infection conferred complete protection from severe respiratory disease in K18-ACE2-transgenic mice infected with SARS-CoV-2. Intranasal delivery of diABZI-4 induced a rapid short-lived activation of STING, leading to transient proinflammatory cytokine production and lymphocyte activation in the lung associated with inhibition of viral replication. Our study supports the use of diABZI-4 as a host-directed therapy which mobilizes antiviral defenses for the treatment and prevention of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , COVID-19 Drug Treatment , COVID-19/prevention & control , Membrane Proteins/agonists , SARS-CoV-2/drug effects , A549 Cells , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line , Chlorocebus aethiops , Enzyme Activation/drug effects , Epithelial Cells/virology , Female , Humans , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects , Male , Membrane Proteins/metabolism , Mice , Mice, Knockout , SARS-CoV-2/growth & development , Vero Cells , Virus Replication/drug effects
7.
Cells ; 10(5)2021 04 29.
Article in English | MEDLINE | ID: covidwho-1217052

ABSTRACT

The rapid spread of the virus, the surge in the number of deaths, and the unavailability of specific SARS-CoV-2 drugs thus far necessitate the identification of drugs with anti-COVID-19 activity. SARS-CoV-2 enters the host cell and assembles a multisubunit RNA-dependent RNA polymerase (RdRp) complex of viral nonstructural proteins that plays a substantial role in the transcription and replication of the viral genome. Therefore, RdRp is among the most suitable targets in RNA viruses. Our aim was to investigate the FDA approved antiviral drugs having potential to inhibit the viral replication. The methodology adopted was virtual screening and docking of FDA-approved antiviral drugs into the RdRp protein. Top hits were selected and subjected to molecular dynamics simulations to understand the dynamics of RdRp in complex with these drugs. The antiviral activity of the drugs against SARS-CoV-2 was assessed in Vero E6 cells. Notably, both remdesivir (half-maximal effective concentration (EC50) 6.6 µM, 50% cytotoxicity concentration (CC50) > 100 µM, selectivity index (SI) = 15) and ledipasvir (EC50 34.6 µM, CC50 > 100 µM, SI > 2.9) exerted antiviral action. This study highlights the use of direct-acting antiviral drugs, alone or in combination, for better treatments of COVID-19.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Fluorenes/pharmacology , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Chlorocebus aethiops , Molecular Docking Simulation , SARS-CoV-2/drug effects , Vero Cells , Virus Replication/drug effects
8.
Antiviral Res ; 187: 105015, 2021 03.
Article in English | MEDLINE | ID: covidwho-1023450

ABSTRACT

The newly emerged severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) coronavirus initiated a pneumonia outbreak (COVID-19) that rapidly spread worldwide and quickly became a public health emergency of international concern; However to date, except Remdesivir, there are no clinically approved specific or effective medicines to prevent or treat COVID-19. Therefore, the development of novel treatments against coronavirus infections caused by the current SARS-CoV-2 virus, as well as other highly pathogenic human coronaviruses, represents an urgent unmet need. Stimulator of interferon genes (STING) plays a central role in host defense mechanisms against microbial infections. STING activation leads to the induction of both type I interferon and autophagy responses, which elicit strong inhibitory effect against the infections caused by a broad range of microbial pathogens. However, whether STING activation can impact infections from SARS-CoV-2 or other coronaviruses remains largely unknown. In this study, we investigated the anti-coronavirus activity triggered by STING activation. We discovered that dimeric amidobenzimidazole (diABZI), a synthetic small molecule STING receptor agonist, showed potent anti-coronavirus activity against both the common cold human coronavirus 229E (HCoV-229E) and SARS-CoV-2 in cell culture systems. In addition, we demonstrated that the antiviral activity of diABZI was dependent on the interferon pathway in HCoV-229E infected normal human fibroblast lung cells (MRC-5) and reconstituted primary human airway air-liquid interface (ALI) cultures. Furthermore, low-dose of diABZI treatment at 0.1 µM effectively reduced the SARS-CoV-2 viral load at the epithelial apical surface and prevented epithelial damage in the reconstituted primary human bronchial airway epithelial ALI system. Our findings have thus revealed the therapeutic potential of STING agonists, such as diABZI, as treatments for SARS-CoV-2 and other human coronavirus infections.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , COVID-19 Drug Treatment , Coronavirus 229E, Human/drug effects , Coronavirus Infections/drug therapy , Membrane Proteins/agonists , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Antiviral Agents/chemistry , Autophagy/drug effects , Bronchi/virology , COVID-19/virology , Cell Line , Coronavirus Infections/virology , Epithelial Cells/virology , Humans , Interferon Type I/pharmacology , Lung/virology , Virus Replication
9.
Biomed Pharmacother ; 131: 110653, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-722385

ABSTRACT

BACKGROUND: Angiotensin receptor blockers (ARBs) reducing inflammation and protecting lung and brain function, could be of therapeutic efficacy in COVID-19 patients. METHODS: Using GSEA, we compared our previous transcriptome analysis of neurons injured by glutamate and treated with the ARB Candesartan (GSE67036) with transcriptional signatures from SARS-CoV-2 infected primary human bronchial epithelial cells (NHBE) and lung postmortem (GSE147507), PBMC and BALF samples (CRA002390) from COVID-19 patients. RESULTS: Hundreds of genes upregulated in SARS-CoV-2/COVID-19 transcriptomes were similarly upregulated by glutamate and normalized by Candesartan. Gene Ontology analysis revealed expression profiles with greatest significance and enrichment, including proinflammatory cytokine and chemokine activity, the NF-kappa B complex, alterations in innate and adaptive immunity, with many genes participating in the COVID-19 cytokine storm. CONCLUSIONS: There are similar injury mechanisms in SARS-CoV-2 infection and neuronal injury, equally reduced by ARB treatment. This supports the hypothesis of a therapeutic role for ARBs, ameliorating the COVID-19 cytokine storm.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Benzimidazoles/pharmacology , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Pneumonia, Viral/drug therapy , Tetrazoles/pharmacology , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Biphenyl Compounds , Bronchi/cytology , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/virology , Cytokine Release Syndrome/virology , Epithelial Cells/drug effects , Epithelial Cells/virology , Gene Expression Profiling , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , SARS-CoV-2 , Transcriptome , COVID-19 Drug Treatment
10.
F1000Res ; 9: 129, 2020.
Article in English | MEDLINE | ID: covidwho-627045

ABSTRACT

We prepared the three-dimensional model of the SARS-CoV-2 (aka 2019-nCoV) 3C-like protease (3CL pro) using the crystal structure of the highly similar (96% identity) ortholog from the SARS-CoV. All residues involved in the catalysis, substrate binding and dimerisation are 100% conserved. Comparison of the polyprotein PP1AB sequences showed 86% identity. The 3C-like cleavage sites on the coronaviral polyproteins are highly conserved. Based on the near-identical substrate specificities and high sequence identities, we are of the opinion that some of the previous progress of specific inhibitors development for the SARS-CoV enzyme can be conferred on its SARS-CoV-2 counterpart.  With the 3CL pro molecular model, we performed virtual screening for purchasable drugs and proposed 16 candidates for consideration. Among these, the antivirals ledipasvir or velpatasvir are particularly attractive as therapeutics to combat the new coronavirus with minimal side effects, commonly fatigue and headache.  The drugs Epclusa (velpatasvir/sofosbuvir) and Harvoni (ledipasvir/sofosbuvir) could be very effective owing to their dual inhibitory actions on two viral enzymes.


Subject(s)
Benzimidazoles/pharmacology , Betacoronavirus/drug effects , Carbamates/pharmacology , Coronavirus Infections , Cysteine Endopeptidases/chemistry , Fluorenes/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Pandemics , Pneumonia, Viral , Viral Nonstructural Proteins/chemistry , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Drug Repositioning , Humans , Pneumonia, Viral/drug therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL